Managing Nutrition to Control Plant Disease

Queensland, Australia 26 & 28 July, 2016

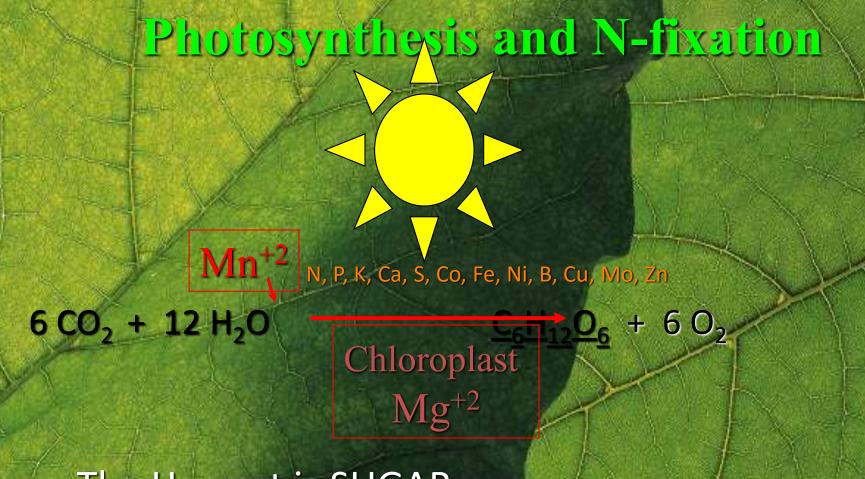
Don M. Huber

Emeritus Professor of Plant Pathology

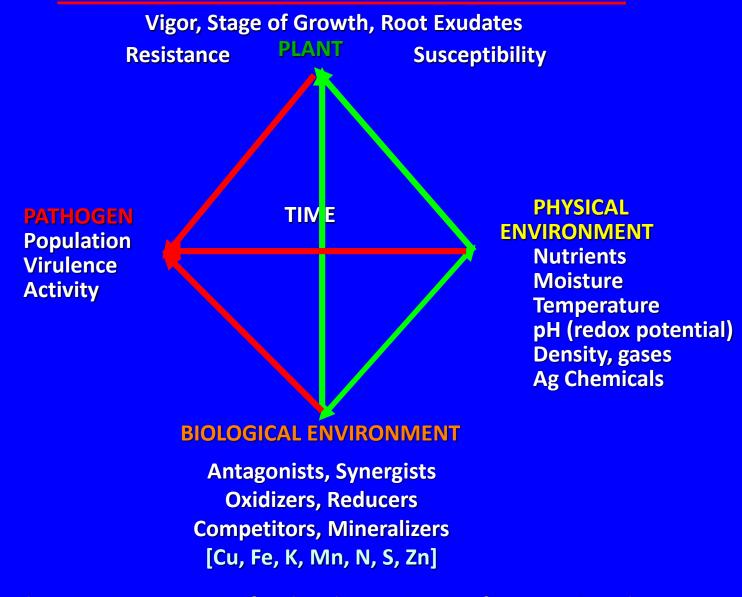
Purdue University, West Lafayette, IN

and

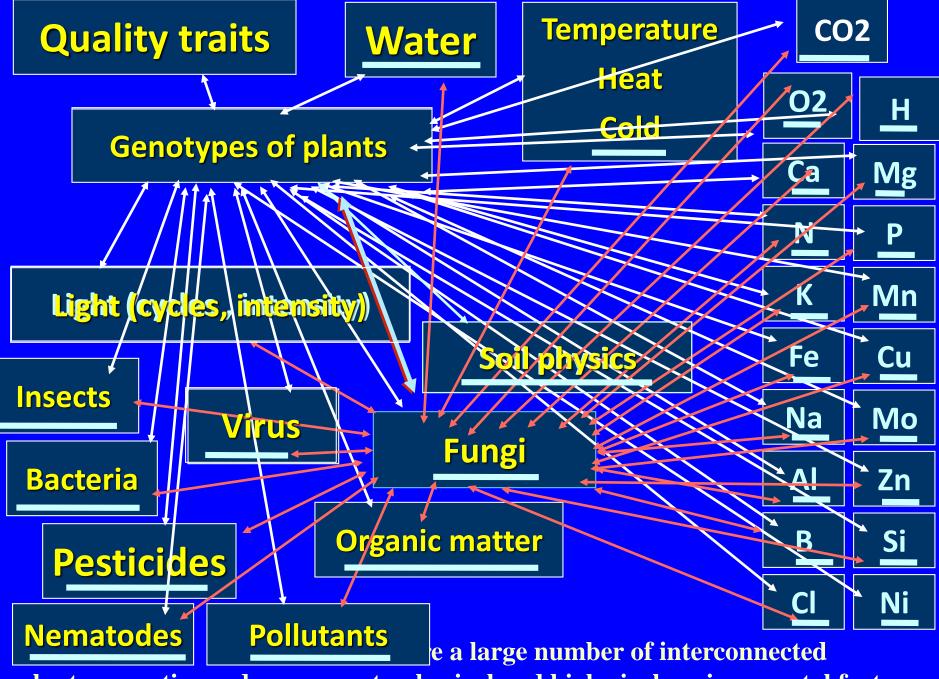
9322 Big Foot Road, Melba, Idaho 83641 USA


Nutrition and Plant Health • Background

- Recognizing the interactions
 - Symptoms nutrition, disease
- Keys to using nutrition to control disease
 - Genetic efficiency
 - Nutrient form
 - Nutrient rate
 - Time and method applied
 - Source
 - Integration with farm operations

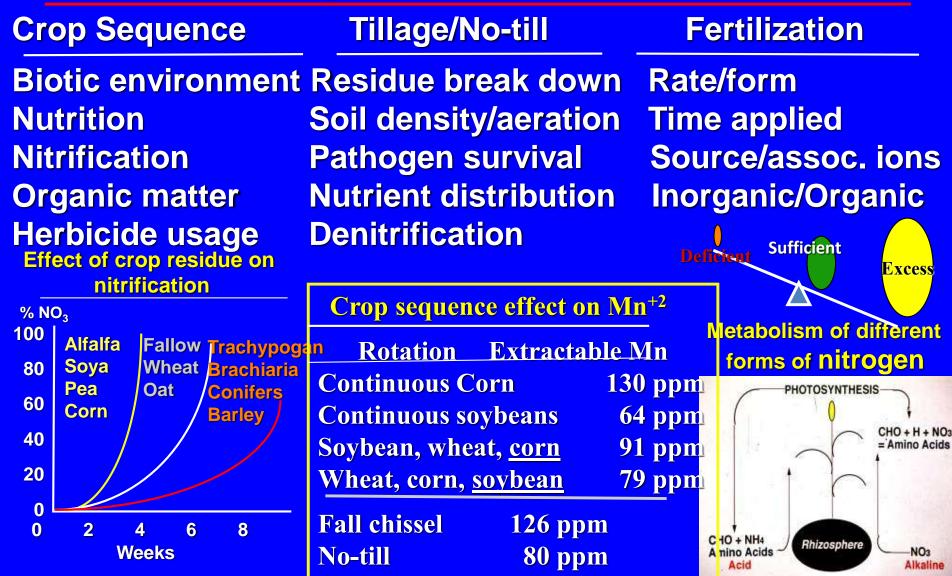

 Glyphosate and GMO impact on nutrition and disease: Failed promises; Flawed science
 Summary and Conclusions

The Plant Factory - Storing the Sun's Energy

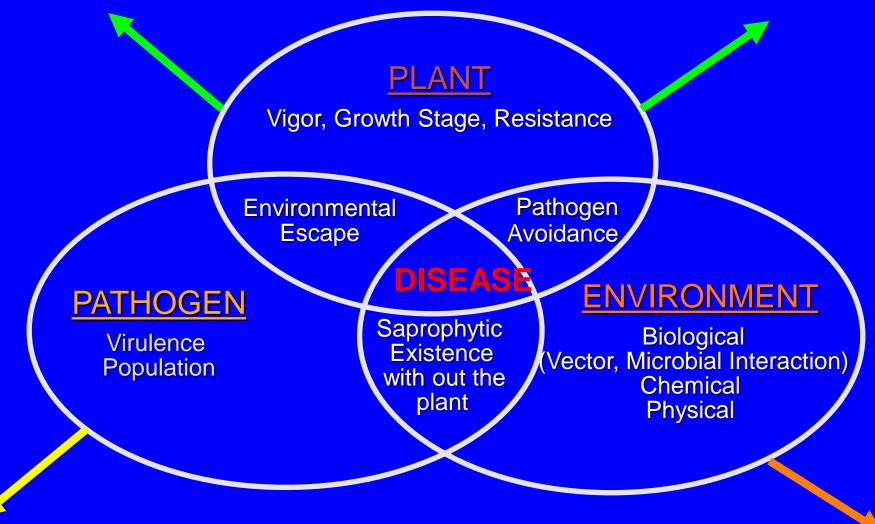


The Harvest is <u>SUGAR</u> and <u>PROTEIN</u>

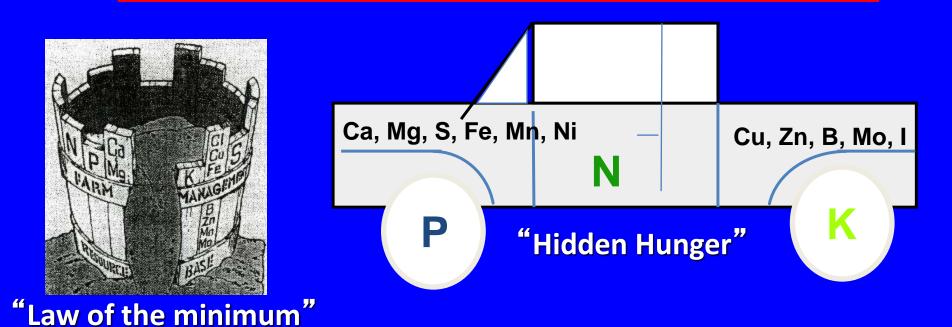
"Farming" is Managing the Ecology



The objective is to optimize for the plant; minimize for pests & pathogens



plant properties and responses to physical and biological environmental factors.


Changes in Agricultural Practices Change the Interactions

The Interaction of Three Factors Over Time Determines if a Disease will be Latent or Severe

NUTRIENT BALANCE IS IMPORTANT BECAUSE EACH ELEMENT FUNCTIONS AS PART OF A DELICATELY BALANCED, INTERDEPENDENT SYSTEM WITH THE PLANT'S GENETICS AND THE ENVIRONMENT

Nutrient BALANCE may be related to disease or <u>root function!</u> *"The roots may be the root of the problem!"* "The weak link may be underground!"

Nutrients are:

Components of plant parts as well as

Activators,

Inhibitors,

and Regulators

of Physiological Processes

Many herbicides and pesticides are nutrient chelators

Root exudation of organic compounds from cotton, wheat and apple with different Zn levels

Zn Treatment	Amino acids	Sugars	Phenolics
	(µg g⁻¹ root 6h⁻¹)		
		COTTON	
-Zn	165	751	161
+Zn	48	375	117
		WHEAT	
-Zn	48	615	80
+Zn	21	315	34
		APPLE	
-Zn	55	823	350
+Zn	12	275	103

Cakmak and Marschner, 1988, J. Plant Physiol.

Reported* Effects of Nutrients on Disease

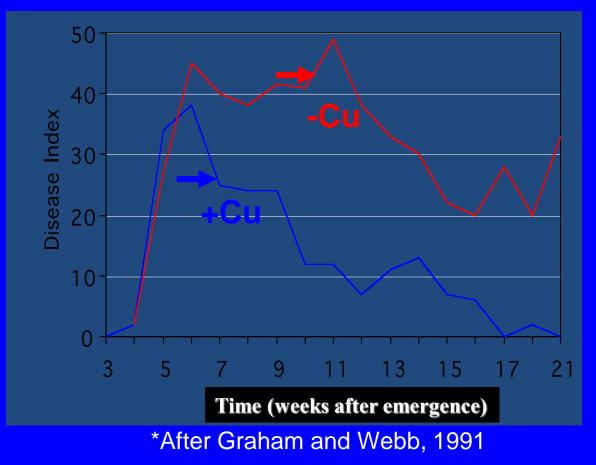
	Disease is:			
Mineral element	Decreased	Increased	Variable	Total
Nitrogen (N/NH4/NO	3) 168	233	17	418
Phosphorus (P)	82	42	2	126
Potassium (K)	144	52	12	208
Calcium (Ca)	66	17	4	87
Magnesium (Mg)	18	12	2	32
Manganese (Mn)	68	13	2	83
Copper (Cu)	49	3	0	52
Zinc (Zn)	23	10	3	36
Boron (B)	25	4	0	29
Iron (Fe)	17	7	0	34
Sulfer (S)	16	3	0	19
Other (Si, Cl, etc.)	71	6	8	85

*Based on 1,200 reports in the literature

Implications of Nutrition in Disease

Verticillium wilt of potato

Manured Not manured **Rhizoctonia winter-kill of wheat**


- **1. Observed effects of nutrient** amendment on disease severity
- **2.** Comparison of plant tissue levels of resistant and susceptible plants
- **3.** Comparison of plant tissue levels of diseased and non-diseased plants
- 4. Association of conditions Affecting a specific nutrient with differences in disease

Effect of Copper on Two Wheat Diseases

Grain yieldErgotTreatment(bu/a)per acreCheck13.317,74310 kg/ha Cu 42.02,420

Effect of soil-applied copper on powdery mildew of wheat*

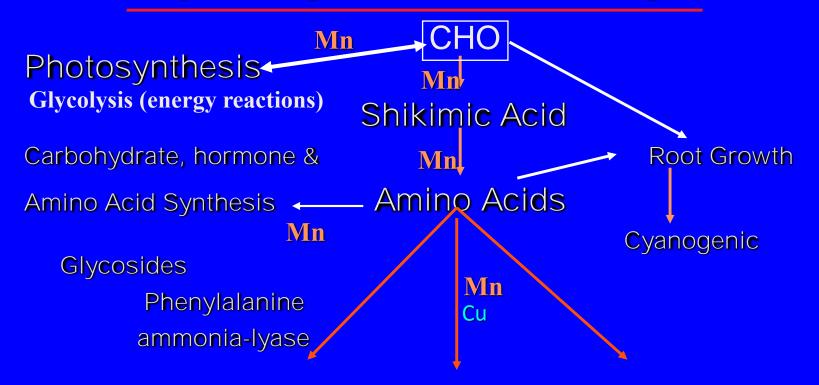
After Evans, 2004

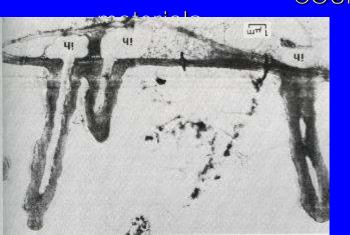
Mineral Content of Caster Bean Leaves Relative to Susceptibility to Botrytis (after Thomas and Orellana, 1964)

Cultivar	Ca	Mg	Na	K
Resistant	122	21	3.2	16.1
Susceptible	38	13	8.1	224.0

Factors Affecting N F	<mark>orm, Mn Ava</mark>	ilability & So	me Diseases*
Soil Factor or	Effect on:	Mn	Disease
Cultural Practice	Nitrification	Availability	Severity
Low Soil pH	Decrease	Increase	Decrease
Green Manures(sor	ne)Decrease	Increase	Decrease
Ammonium Fertilize	ersDecrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibito	ors Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
Glyphosate		Decrease	Increase
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed Potato scab, Rice blas	t, Take-all, Phyma	Decrease totrichum root rot	, Corn stalk rot

Nutrient Mechanisms that Reduce Disease


 Increased plant resistance Physiology, inhibitors Defenses - callous, cicatrix, etc.


 Disease escape, tolerance Increased root, leaf growth Shorter susceptible stage Compensate for disease damage

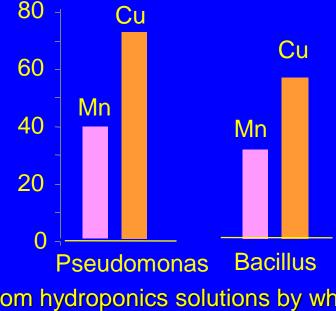
 Modify the environment Ph, other nutrients Rhizosphere biology interactions

 Inhibit pathogen activity Reduced virulence, survival Biological control and growth

Physiologic Roles of Manganese

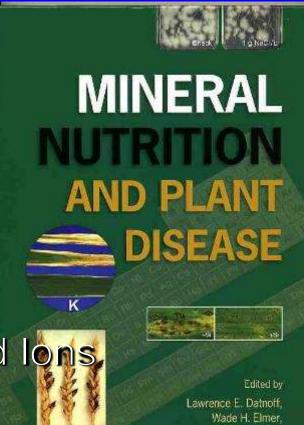
COUMARINS LIGNINS F "Lignituber" formed in response to cell Penetration. Wheat Triticale (After Skou, 1975)

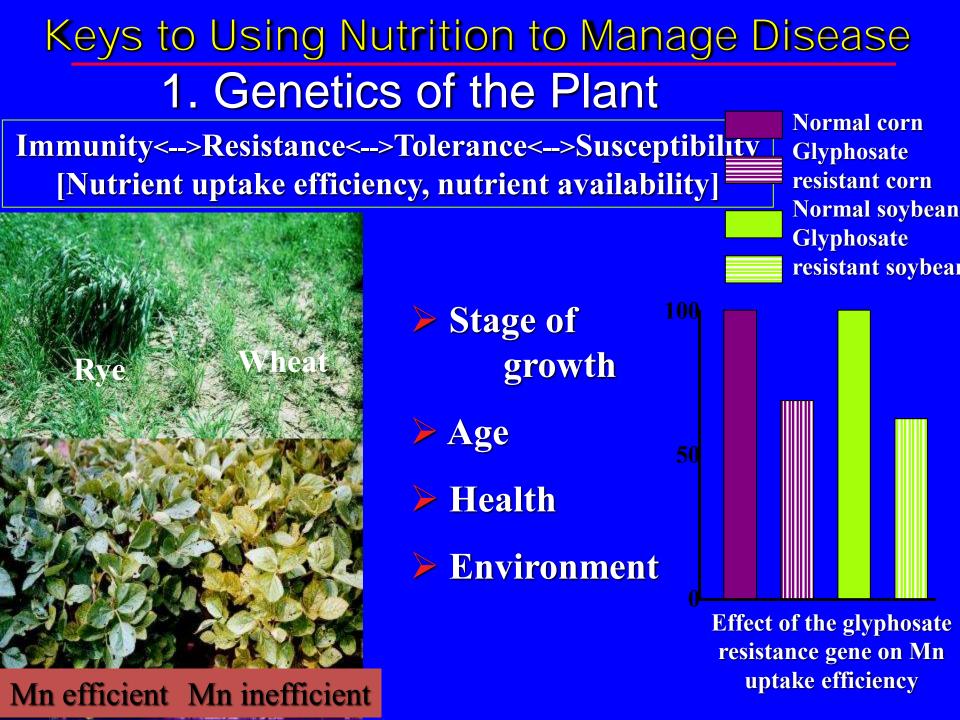
FLAVANOIDS = Defense

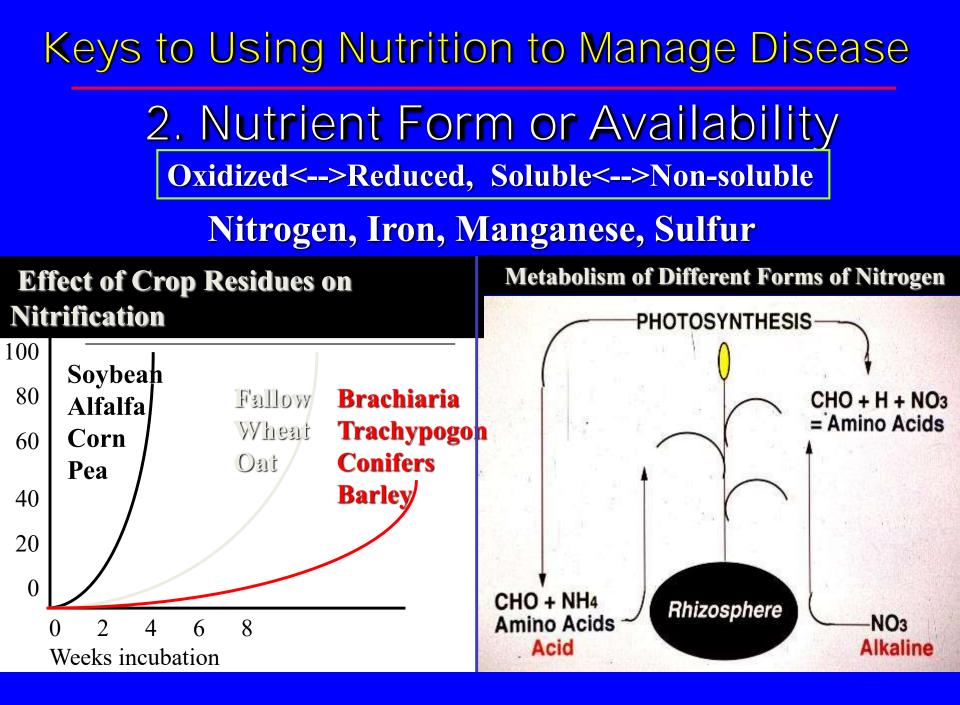

The Abiotic Environment affects Nutrients - pH

High pH Diseases Root knot nematode Sclerotium root rot Verticillium wilt **Take-all of cereals** Potato scab **Onion white rot** Anthracnose Potato virus X Maize stalk rot

Disease as a Symptom of Deficiency

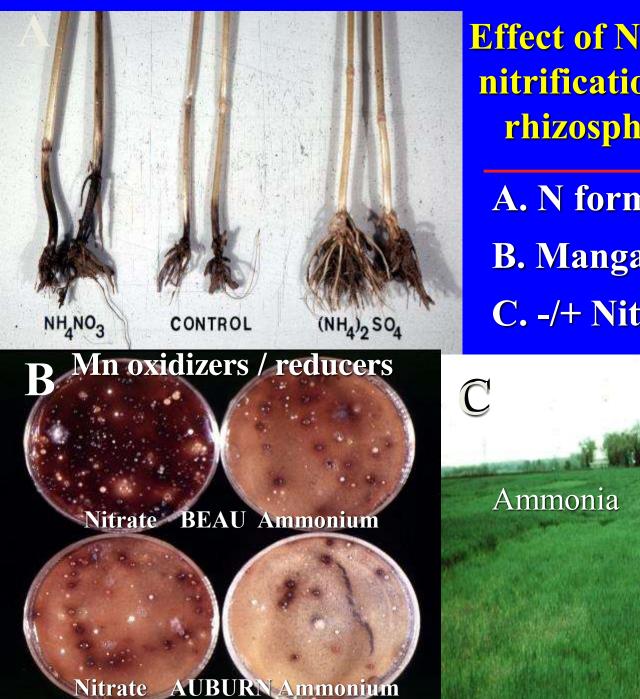

- Take-all: manganese, Cu, etc. (Huber, Thompson)
- Stem melanosis, ergot, take-all: copper (Evans)
- Ergot, root rot fungi, damping-off : Mn, B, Cu (Comeau, Evans)
- Fusarium head blight: worse in low Copper (Franzen et al.)
- Verticillium wilt and common scab of potatoes: Mn, NH₄


Taken up in 90 hours from hydroponics solutions by wheat rhizosphere bacteria After Voss 2001


Keys to Using Nutrition to Manage Disease

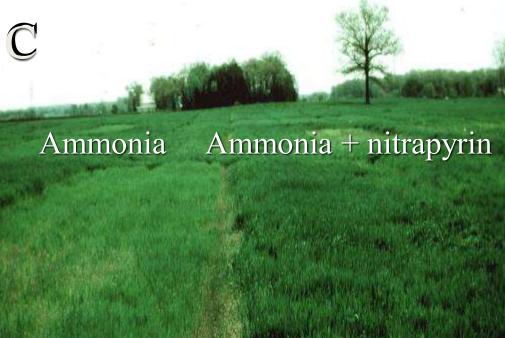
- 1. Genetics of the Plant
- 2. Nutrient Form or Availability
- 3. Rate Applied or Available
- 4. Method and Time Applied
- Source of Element & Associated Ions.
- 6. Integration with other practices

and Don M. Huber

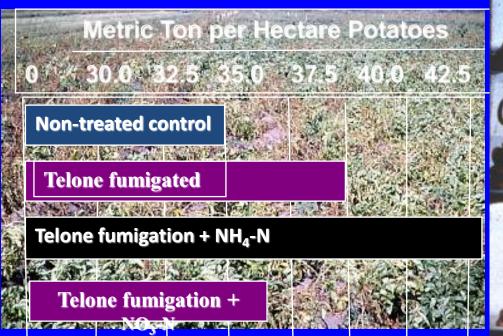

Some Diseases Decreased by NO₃-N & alkaline pH

Crop	Disease	Pathogen
Asparagus	Wilt	Fusarium oxysporum
Bean (<i>P. vulgaris</i>)	Chocolate spot	Botrytis
	Foot and hypocotyl rot	Fusarium solani
	Rhizoctonia solani	
Beet	Damping-off	<i>Pythium</i> spp.
Cabbage	Club root	Plasmodiophora brassica
	Yellows	Fusarium oxysporum
Celery	Yellows	Fusarium oxysporum
Cucumber	Yellows	Fusarium oxysporum
Pea (<i>Pisum sativum</i>)	Damping-off	Rhizoctonia solani
Pepper	Wilt	Fusarium oxysporum
Potato	Stem canker	Rhizoctonia solani
Tomato	Gray mold	<i>Sclerotina</i> spp.
	Sclerotium blight	Sclerotium rolfsii
	Wilt	Fusarium oxysporum
Wheat	Eye spot	Pseudocercosporella
	herpotrichoides	

Some Diseases Decreased by NH₄-N & acid pH

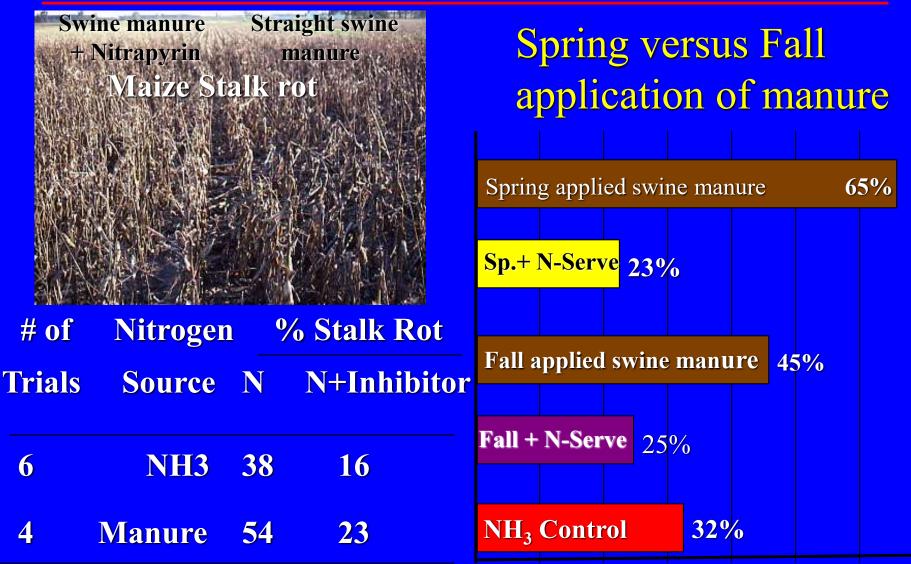

Crop	Disease	Pathogen
Bean (P. vulgaris)	Root rot	Thielaviopsis basicola
	Root knot	Meloidogyne
Carrot	Root rot	Sclerotium rolfsii
Corn	Stalk rot	Gibberella zeae
EggPlant	Wilt	Fusarium oxysporum
Onion	White rot	Sclerotium rolfsii
Pea	Root rot	Pythium spp.
Potato	Scab	Streptomyces scabies
	Wilt	Verticillium dahliae
	Virus	Potato virus x
Rice	Blast	Pyricularia grisea
Tomato	Southern wilt	Pseudomonas solanacearum
	Anthracnose	Colletotrichum spp.
	Wilt	Verticillium dahliae
	Virus	Potato virus x
Wheat	Take-all	Gaeumannomyces graminis

 \mathbf{O}


Effect of N form & inhibiting nitrification on Take-all and rhizosphere Mn oxidizers

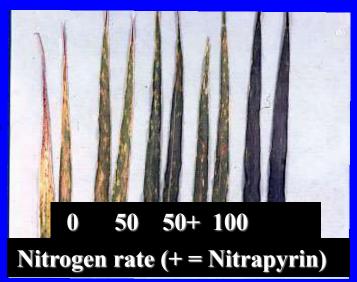

A. N form on Take-allB. Manganese oxidizersC. -/+ Nitrification inhibitor

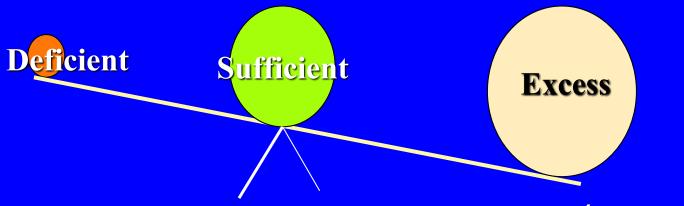
Effect of N Form on Yield of *Verticillium* Infected Potato


Effect of Inhibiting Nitrification on Potato Scab

Disease scale: 0=no surface scab, 2=10% surface scab, 6=30% scab.

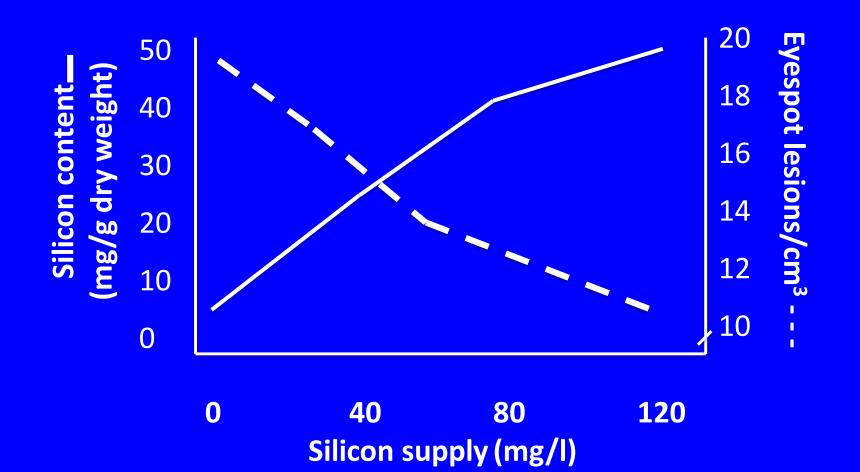
Effect of N source & Inhibiting Nitrification on Stalk Rot of Corn


Keys to Using Nutrition to Manage Disease


3. Rate Applied or Available

• Amount available

Deficiency to sufficiency versus Sufficiency to excess for the particular


- Time available
- Nutrient balance

Corn is continuous; legumes have a 'recovery' window

Tissue Silicon and Blast Susceptibility (Pyriculara oryzae; Magnaporthe grisea)

Relationship of Calcium Rate to Pectolytic Enzymes and Soft Rot Caused by Erwinia carotovera (after Platero and Tejerina, 1976)

Calcium content (mg/g dry wt)	Pectolytic activity (relative units)* Sympton Polygalturonase Pectin transeliminase severity		
6.8	62	7.2	4
16.0	41	4.5	4
34.0	21	0	0

*0 = no decay; 4 = Complete decay within 6 days

Relationship of B Rate to Red Spider Mite Severity

B supply (mg/l)	Mites (No/m²)	Feeding holes No./cm ²)	Tissue Cyanidin (ug/g)
0	1.8	67	2-5
0.5	1.7	60	10-18
5.0	1.2	30	
50	1.0	20	20-32
500	0.9	17	
1000	0.9	12	

Keys to Using Nutrition to Manage Disease 4. Method and Time Applied Soil<-->Seed<-->Foliage, Side-dress<-->Band<-->Broadcast Spring<-->Fall<-->Split

Susceptibility of Plant, Favorable Environment, Virulence of Pathogen

Effect of nitrogen source and time on *Rhizoctonia* "winter-kill" of winter wheat

Time 1	N applied on	yield &	sharp eyespot
Ν	% lodging	Index	Yield (kg/ha)
Fall	3	2.1	3036
Early	spring 73	3.2	2640

N Treatment	Time	<mark>% Kill</mark>
NH3 + N-Serve	September	14
Urea Granuals	February	40
28% N Solution	February	60
<u>Urea</u>	April	<u>14</u>

Mobility of Nutrients in Plants

Very mo	bile	Moderately	Somewhat	Poorly
NI	Mg	Fe	Са	
Ρ	S	Cu	Mn	
K	Мо	Zn		
Ni		В		
Cl		Со		
Na		Si		

Keys to Using Nutrition to Manage Disease 5. Source and Associated Ions Gas<-->Liquid<-->Granule; Anion<-->Cation (K2SO4/KCI)

Effect of KCI on the incidence of take-all in wheat (+ NH₄-N)

	ha) % ii Spring		Grainyield (t/ha)
0	0	45	5.3
56	0	34	5.7
56	185	11	6.5

Christensen et al., Agron, J. 73: 1053-1058; 1981

Effect of copper on wheat melonosis (*Pseudomonas* cichorii). After Mahli et al, 1989

Treatment			Percent disease	Grain yield (kg/ha)
Control	Nil	None	92	294
CuSO4	10	Banded	76	511
CuSO4	10	Incorporated	34	2016
CuSO4	10	Foliar spray	6	2116
Cu-Chelate	2	Foliar spray	7	2505

Nutri	ent Interactions – (Pl	ant, rate, pH effect)
Eleme	ent Decreases uptake	Increases uptake
NH_4	K, Ca, Mg, Cu	Fe, Mn, P, Ni, Zn
NO ₃	P, S, Cl, Fe	K, Cu, Mn
Мо	Fe	Mn, (Fe), NO ₃ utilization
Ρ	Cu, Fe, Mn, Ni, Zn	Ca, Mn, Mo
K	Mo, Ca, Mg, NH ₄ , B, Cu	NO ₃ , Fe
S	Mg, Mo	K, Ca, NH ₄
Ca	Al, Cu, K, Mg, Fe, Mn, B, Zn	Р, В
Mg	K, Ca, Mn, Fe, Ni	Ρ
В	Ca	Mn
Со	Ni	
Cu	Fe, P, Ca, Mo, K, Mg, Ni, Zn	Mn
Fe	P, Ca, Mn, Ni	
Mn	P, Ca, Fe, (Zn)	B, Mo, (Zn)
Zn	P, Ca, Fe, Ni	NH ₄
Cl	NO ₃	Mn, NH ₄
Si		Mn, P

Keys to Using Nutrition to Manage Disease 6. Integration with other practices Rotation, Tillage, Seed rate, Herbicide, pH, Moisture

Severe take-all of wheat following glyphosate on soybeans (left), the non-treated soybean control is right. Less take-all of wheat in a Firm (right) than loose seed-bed (left)

No press wheel Press wheel

Pesticide Interactions with Nutrition

Many pesticides are mineral chelators

'Immobilize' (or enhance) critical mineral co-factor for enzymes Organic phosphates, amino-phosphonates, dithiocarbamates, etc.

Herbicides - specific ion or general immobilization

Cu examples: Puma Gold (fenoxyprop); Tordon General: Glyphosate, Glufosinate Others: Zn, Fe, Co, Ni, B, etc.

 Environmentally influenced (activity, stability, persistence) pH, moisture, temperature, microbial activity, soil type

Compensate for Reduced Availability if using the Tool!

Some Characteristics of Glyphosate

Persistent

Disrupts endocrine hormones

Organic Chronic phosphonate toxicant

Growth regulator

Mineral Chelator Virulence enhancer

Inhibits enzymes

Synthetic Amino Acid

<u>Antibiotic</u>

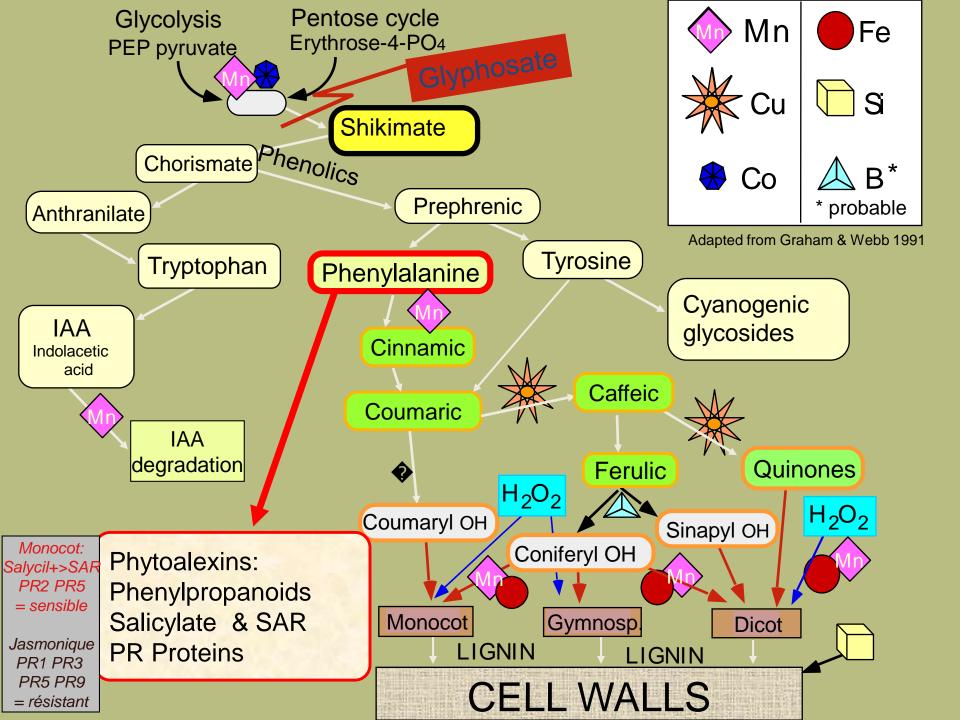
Herbicide

DNA mutagen

Immobilizes B, Ca, Co, Cu, Fe. K, Mg, Mn, Ni, Zn

<u>% Mineral Reduction</u> in Roundup Ready® Soybeans Treated with Glyphosate

Plant tissue	Ca	Mg	Fe	Mn	Zn	Cu
Young leaves	<u>40</u>	<u>28</u>	7	<u>29</u>	NS	NS
Mature leaves	30	<u>34</u>	<u>18</u>	<u>48</u>	30	27
Mature grain	26	<u>13</u>	<u>49</u>	45		


Residual glyphosate?

Reduced:Yield26%Biomass24%

After Cakmak et al, 2009

Some of the 291 Enzymes Glyphosate Down Regulates

Enzyme	-Fold change
Taurine ATP-bindingsystem	11.07
Glutamate synthase	6.06
Aminomethyl transferase	5.58
Tyrosine aminotransferase	4.36
Thioredoxin reductase	4.20
NADH dehydroenase	4.04
Riboflavin synthase	3.57
3-phosphoadenosine-5-phosphosulfte reductase	3.75
Membrane bound ATP synthase	3.67
Acetolactate synthase	3.59
Pyridine nucleotide transhydrogenase	3.50
Shikimate kinase	3.36
3-deoxy-D-arabino-heptulosonate-7-phosphatase	3.38
Sulfite reductase	3.19
RNAase	3.18
Glutathione S-transferase	3.04
D-amino acid dehydrogenase	3.00
Glucose-6-phosphate dehydrogenase	2.67
ATP sulfurulase	2.65
5-enolpyruvylshikimate-3-phosphate synthetase (EPSPS)	2.62

Reduced Nutrient Efficiency of Isogenic RR Soybeans

Tissue:	Mn	Zn
Isoline	%	%
Normal	100	100
Roundup Ready®	83	53
RR + glyphosate	76	45

Copper, iron, and other essential nutrients were also lower in the RR isoline and reduced further by glyphosate!

After Zobiole et al., 2008, 2009

Herbicide action is by soil-borne fungal pathogens

Glyphosate Increases Disease Susceptibility

After Rahe and Johal, 1988; 1990 Scheffer et al, 2012, 2013

Field soil + glyphosate No glyphosate control

Some Plant Pathogens Increased by Glyphosate

Corynespora cassicola Fusarium spp. Phytophthora spp. Pythium spp. Rhizoctonia solani Thielaviopsis bassicola Xylella fastidiosa Myrothecium verucaria F. solani f.sp. Pisi Gaeumannomyces graminis Magnaporthe oryzae

("Emerging" and "reemerging diseases")

Fungal Mn oxidation in soil (increased virulence)

Abiotic: Nutrient deficiency diseases; bark cracking, mouse ear, 'witches brooms', drought stress, chill damage

Glyphosate accumulates in Foliar application of glyphosate shoot, root and reproductive tissues Systemic movement **Translocated to roots** throughout the plant **15-20% released into soil Chelation of micronutrients** Glyphosate can accumulate in soil **Compromises** plant (slow to little degradation) disease resistance Residual soil and residue effects / Stimulates soilborne **Glyphosate is toxic to beneficials** diseases **N-fixing microbes** Mycorrhizae **Reduces** nutrient uptake **Biological control organisms Earthworms PGPR** organisms

Schematic of glyphosate interactions in soil

Nutrient Management for Citrus Disease Control

Principle	Implementation	Nutrie	ents
Time	Latent periods Flush periods	N, P, K, B, C Cu*, Mn*, Z	a, Fe, Mg, Zn*, Mo, Co, Ni
Method	Soil (Latent eriod) Foliar (Flush perio		
Form	NH4, NO3, PO3*, P	O4, SO4	
Rate	Compensation , M	aintenance	Tissue test
Integration	Weed control	No glypł	nosate/Liberty

Multi-component Approach for CVC/HLB

ltem	CVC	HLB
Target tissue	Xylem	Phloem
Time	All	Flushes
N Form	NH4	ΝΟ
Strategy 1*	Resistance and	Compensation
(Plant)	Root/soil	Foliar (Phosphites)
	NH4, Cl, Mn	Mn, Zn, Mo, Cu, Co, B, Mg
Strategy 2	Modify	Modify
(Environment)	Weed Control	Block N-source, weeding
	Inhibit nitrification	Shade, Mo, Mn, Co
Strategy 3	Inhibit	Suppress
(Pathogen)	Shikimate	NO3, Cu-I

*Strategies: 1=plant, 2= environment, 3=pathogen

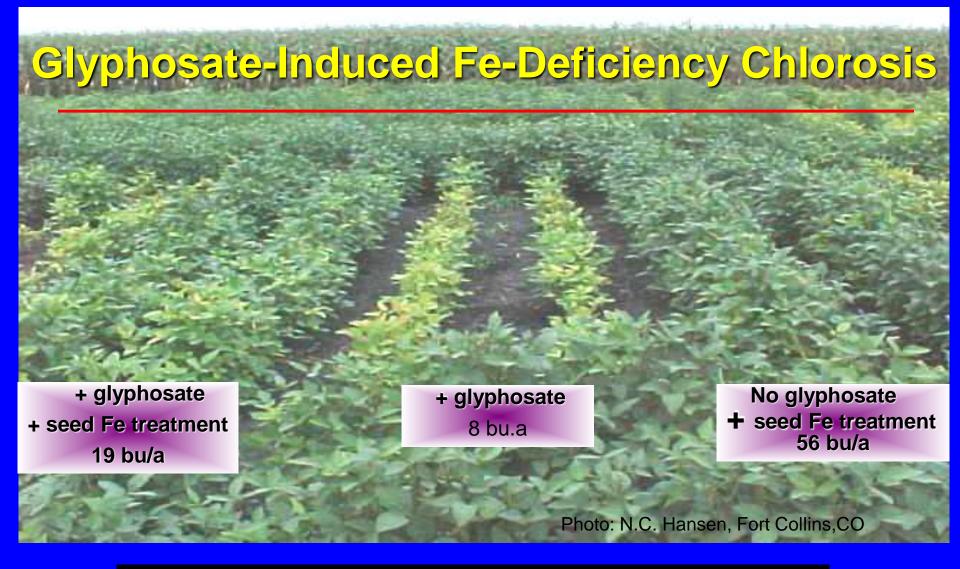
Citrus Variegated Chlorosis Predisposition to CVC (*Xylella fastidiosa*) by glyphosate

CVC with typical glyphosate Mulch Glyphosate weed control CVC Control Mn: mg k 57.3 mg kg-1 DW 13.3 Zn: **Alternative mulch** program of **Grass mulch under trees** T. Yamada After T. Yamada

Nutrient Management of HLB (Boyd, Yamada, AgSpectrum, Dean, etc.)

AgSpectrum 2010-Start AgSpectrum 2011

Nutrient Program:


- **1.** Compensate for nutrient disruption N, K, Mn, Zn, Mo, Co
- 2. Optimize general nutritional needs
- 3. Timing, form, frequency, rate re infection cycle

REMEMBER

- Nutrition is an integral part of efficient crop production
 A. Crop quality and quantity
 B. Disease control
- Changes in the nutrient related interactions of the plant environment and pathogen affect disease
 A. Increase plant resistance and defense response
 B. Make the environment less conducive for pathogenesis
 C. Reduce virulence or survival of the pathogen
- **3.** Nutrient rate, form, time, source and method of application are important principles for disease control
- 4. Integrate nutrition and cultural practices for optimum yield, disease control, over-all plant health and nutrient quality

Russet Potatoes, August 2009, Idaho Dying 2-3 Weeks Early from Verticillium Wilt WHY?

"Cool Spring"
"Too warm July"
"Too much irrigation"
"A bad year for Verticillium wilt"

Interaction of seed-applied Fe and glyphosate application on Fe deficiency chlorosis in soybeans; Minnesota, USA

Jolley et al., 2004, Soil Sci. and Plant Nutrition 50:973-981

% Reduced Nutrient Density in RR versus Non-RR*

Nutrient	Alfalfa	Soy Beans**
Nitrogen	13 %	40 %
Phosphorus	15 %	
Potassium	46 %	16 %
Calcium	17 %	26 %
Magnesium	26 %	30 %
Sulfur	52 %	
Boron	18 %	
Copper	20 %	27 %
Iron	49 %	18 %
Manganese	31 %	48 %
Zinc	18 %	30 %

*Third year, alfalfa, second cutting analysis; Glyphosate applied one time in the previous year ****Youngest mature leaf**

Effect of Glyphosate Herbicide on Sudden Death Syndrome of Roundup Ready[®] Soybeans

No glyphosate 💦 Glyphosate

Glyphosate

No glyphosate

Jowa

Corynespora Root Rot

An extensive dark brown to black rotting of small lateral roots

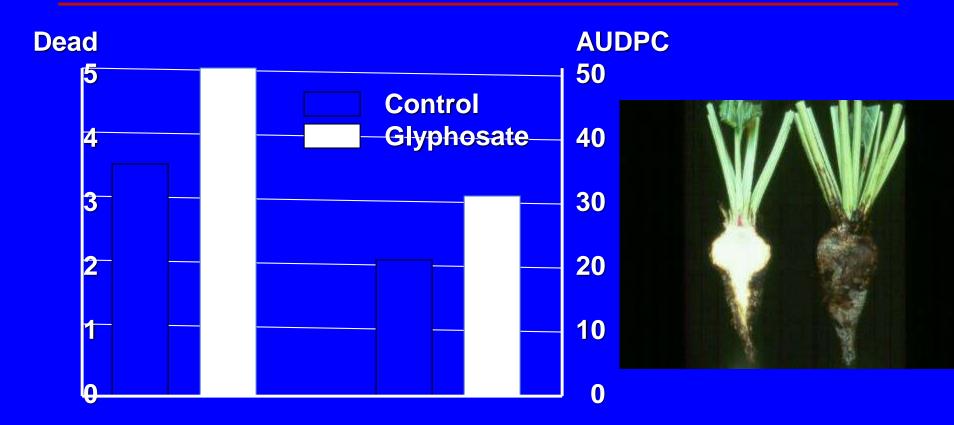
Generally considered a root "nibbler"

Especially severe when glyphosate is applied to near-by weeds

Control

Inoculated

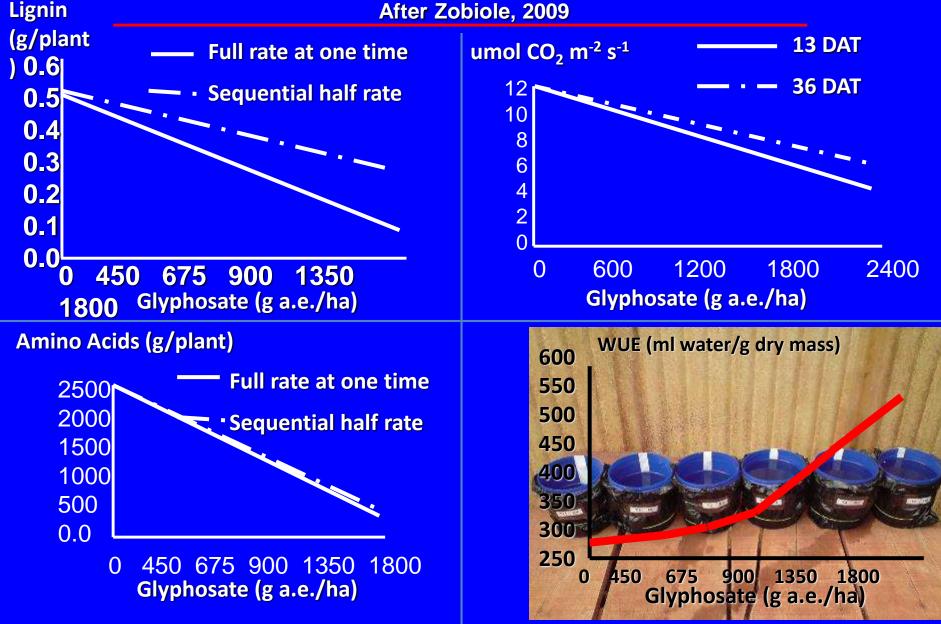
+ glyphosate


Inoculated

Especially severe when glyphosate is applied to the plant

Long, multiseptate spores

Corynespora cassiicola


Impact of Glyphosate on Sugar Beet

RhizoctoniaFusariumB4RR varietyB4RR variety

"Precautions need to be taken when certain soil-borne diseases are present if weed management for sugar beet is to include post-emergence glyphosate treatments." Larson et al., 2006

Effect of Glyphosate on Lignin, AA, Water Use Efficiency, and Photosynthesis of Glyphosate-Resistant Soybeans

Herbicide Affects on RR Corn Yield Indiana, 2010

RR Corn Hybrid

Herbicide	6733HXR	6179VT3	5442VT3	5716A3
Surestart (11")	266*	216	223	219
Cadet (V6)	227	219	219	213
Laudis (V6)	224	218	214	214
Integrity (pre-R	E) 231	217	215	204
Glyphosate (V6) 212	207	206	210
Steadfast (V6)	207	204	201	196
Status (V6)	187	195	193	192

*125.6 % of glyphosate yield (yields in bu/a - rounded) All plots were hand weeded

Special Considerations in Fertilizing RR Crops

Two factors: 1) Chemical; 2) gene

- 1. Providing nutrient availability for yield and quality Compensate for reduced plant efficiency Compensate for reduced soil availability [Timing and formulation are important]
- 2. Detoxifying residual glyphosate

In meristematic root, stem, flower tissues, etc. In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.) Disease control related (nutrition, pathogen antagonists, etc.) Biological amendment (N-fixers, PGPRs, etc.)

4. Judicious use of glyphosate

Yield Response of Roundup Ready® Soybeans to Micronutrients					
India Treatment		<u> </u>	Kansas eld (bu/a)		
Untreated	46	24	77	33	
Glyphosate on	ly 57	33	65		8
Glyphosate +	75	56	78	19	
Micronutrient	Mn	Mn	Mn		Fe

Effect of Glyphosate on Roundup Ready® Corn

Colorado State University, 2007 Mike Bartolo, Sr. Res. Scientist

% Treatment	grain Yie moisture				
Untreated*	15.6	234 a	100		
Glyphosate*	* 15.6	195	d 83		
Glyphosate + Zn, Mn	15.6	221 b	94		
Glyphosate + Mn, Zn, F		208 c	89		
*Hand weeded, **1 lb a.i. + 1 pt AMS per acre Notes: UTC = genetic potential (with RR gene) Glyphosate reduces genetic potential 39 bu/a Application of high Mn & Zn recovers some genetic potential, lower Mn & Zn recovers less					

Response of Roundup Ready® Corn to Zn & Mn, 2007* NDSU Carrington				
Treatment	Yield (bu/a)			
Glyphosate control	144			
Zn seed Treatment	156			
Foliar applied Zn	158			
Foliar applied Zn+N	An 173			
Seed + Foliar Zn	175			
Soil granular Zn sul	lfate 167			
* All treatments reco glyphosate	eived			

Glyphosate & Manganese Effects on Cotton

Glyphosate @ 22 oz/ac plus ammonium sulfate (AMS)

Glyphosate @ 22 oz/ac plus AMS + Manganese

> Effect of glyphosate and Manganese on Cotton Yield (Texas)

Treatment	% chlorotic	# seed
	plants cotton	

Conventional herbicide 5 4885

Glyphosate 97 2237

Glyphosate + Mn 2 4693 after Ronnie Phillips, 2009

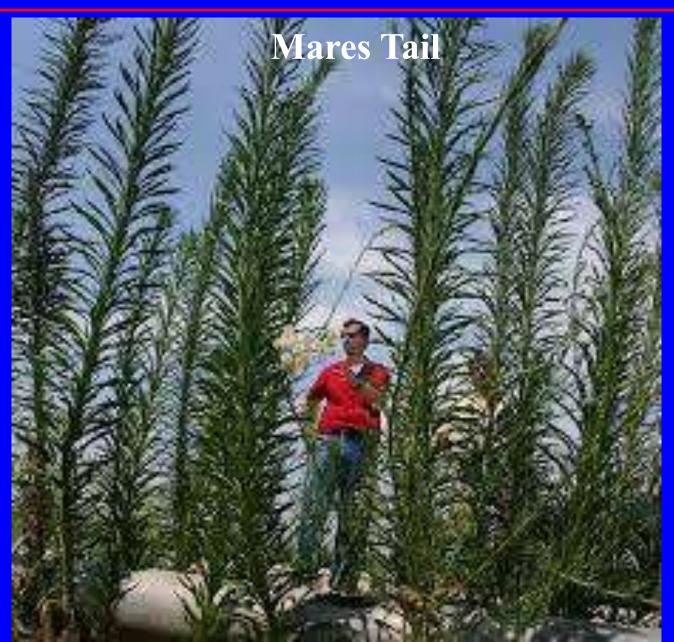
Untreated Check (conventional herbicide)

Effect of Tillage on Glyphosate Injury & Yield Field History: 8 years Conservation Reserve Program 2 qt blyphosate burndown 2008 1 qt glyphosate on RR corn 2009 1 qt glyphosate burndown 2010

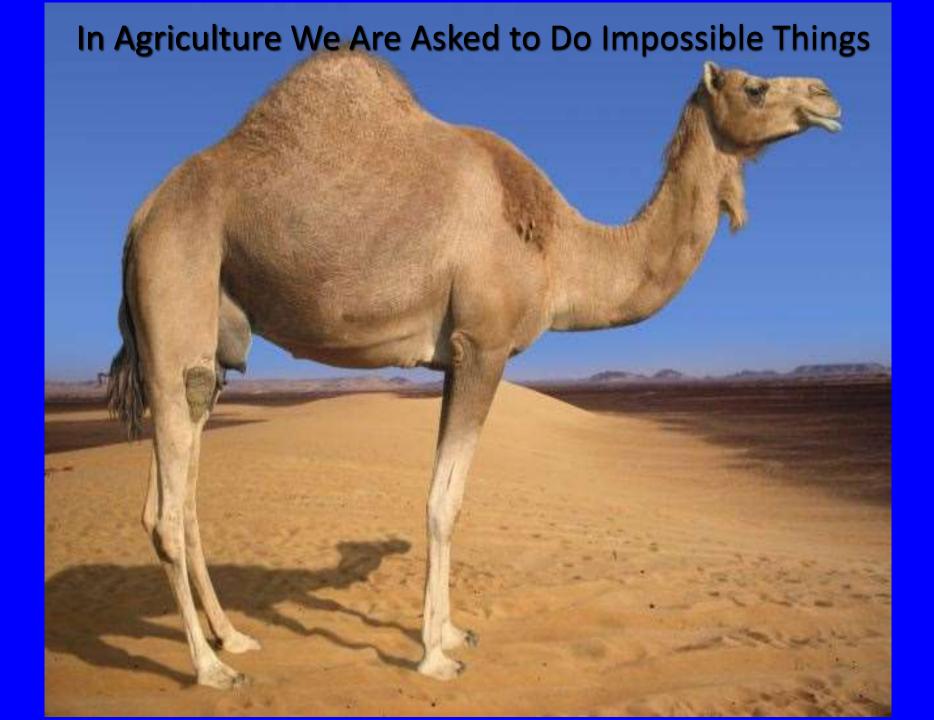
No-tillFall chiselYield: 40 bu/a60 bu/a

Photos: Nesters Farm Services

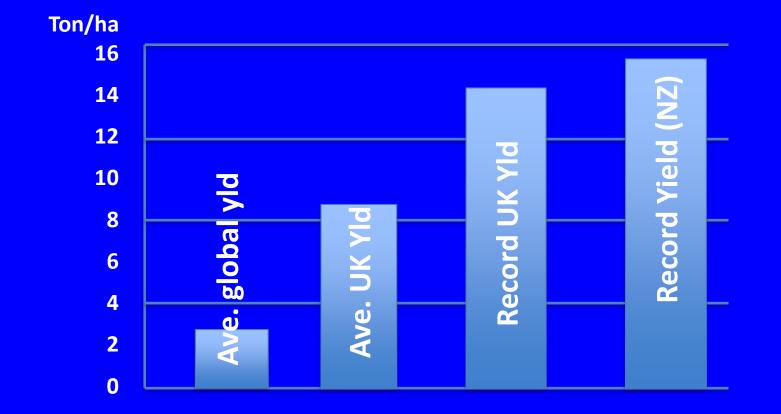
Increasing Nutrient Uptake Efficiency


Shallow, Compact Root System in RR Soybeans

Isogenic Normal


Isogenic Roundup Ready

An Epidemic of Roundup Resistant Weeds



REMEMBER

- Nutrition is an integral part of efficient crop production
 A. Crop quality and quantity
 B. Disease control
- Changes in the nutrient related interactions of the plant environment and pathogen affects disease
 A. Increase plant resistance and defense response
 B. Make the environment less conducive for pathogenesis
 C. Reduce virulence or survival of the pathogen
- **3.** Nutrient rate, form, time, source and method of application are important principles for disease control
- 4. Integrate nutrition and cultural practices for optimum yield, disease control, over-all plant health and nutrient quality

Average and Record Wheat Yields

Plant Disease

"The inability to perform physiological functions to its full genetic potential"

Resistance

- Physical impenetrable
 Cell thickness, walling off, water barrier
- Physiological Preformed or active inhibitors Amino cmpd, glycoproteins, phytoalexins, etc.
- Immunity 'No response' Lack of nutritional support – reducing sugars vs sucrose

Understanding the Interactions

- Immunity = Absence of disease
 Pathogen present but no infection
- Escape = Avoidance of disease Pathogen or environment not conducive for infection
- Resistance = Restriction in pathogenesis
 Plant resists the pathogen
- Tolerance = Productivity in spite of infection
 Plant produces new roots to compensate

Susceptibility → Tolerance → Resistance

- Epidemic = Extensive area of disease development
- Predisposition = Conditions increasing disease severity

Disease Cycle

Infection Direct, natural opening, vector, wound

Dissemination spread Disease development & Reproduction

Source Survival

Pathogen Dissemination

Pathogens

Bacteria, fungi, viruses, nematodes, (parasitic plants)

Vectors:

Insects, nematodes, fungi, Man/animals

Dissemination:

Seeds, plant parts = Bacteria, fungi, viruses, nematodes

Wind = Bacteria, fungi, vectors

Water = Bacteria, fungi, nematodes, viruses

Vectors = Viruses, bacteria, fungi

Man/animals = all

Disease Control

- Resistance Genetic (+ nutrition, environment, chemical) **Exclusion Quarantines, Pathogen free 'seed' Suppression Biological (crop sequence/rotation), nutrition,** environment, chemical, physical (heat, radiation, solarization, drying) **Eradication**
 - Chemical, crop rotation, biological
- Integrated management (IPM)

Plant Defenses

No response No chemical receptors, nutritional support, ?

- **Pre-existing structural or chemical defenses** Phenolics, glycoproteins, suberized tissues, etc.
- Induced structural or chemical defenses
 Phenolics, phytoalexins, cork/callous/tyloses/gums, glycopeptides, hypersensitive response, SARs, glycopeptides, siderophores,etc
- Germination inhibitors Germination inhibitors, stimulants
 - Cross protection Viral protection